metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C23⋊4D12, C24.40D6, C6.42+ 1+4, D6⋊D4⋊3C2, C12⋊7D4⋊3C2, D6⋊C4⋊1C22, C22⋊C4⋊43D6, (C22×C6)⋊10D4, (C22×C4)⋊12D6, C6.8(C22×D4), (C2×D12)⋊3C22, C3⋊1(C23⋊3D4), (C2×C6).37C24, C4⋊Dic3⋊5C22, C2.8(D4⋊6D6), (S3×C23)⋊4C22, (C22×C12)⋊8C22, C2.10(C22×D12), C22.18(C2×D12), (C2×C12).130C23, C23.21D6⋊2C2, (C22×S3).9C23, (C23×C6).63C22, C22.76(S3×C23), (C22×C6).127C23, C23.158(C22×S3), (C2×Dic3).10C23, (C22×Dic3)⋊7C22, (C6×C22⋊C4)⋊15C2, (C2×C22⋊C4)⋊16S3, (C2×C6).173(C2×D4), (C22×C3⋊D4)⋊6C2, (C2×C3⋊D4)⋊36C22, (C3×C22⋊C4)⋊48C22, (C2×C4).136(C22×S3), SmallGroup(192,1052)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C23⋊4D12
G = < a,b,c,d,e | a2=b2=c2=d12=e2=1, ab=ba, dad-1=eae=ac=ca, ebe=bc=cb, bd=db, cd=dc, ce=ec, ede=d-1 >
Subgroups: 1096 in 346 conjugacy classes, 111 normal (13 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, S3, C6, C6, C6, C2×C4, C2×C4, D4, C23, C23, C23, Dic3, C12, D6, C2×C6, C2×C6, C2×C6, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C24, C24, D12, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C22×S3, C22×S3, C22×C6, C22×C6, C22×C6, C2×C22⋊C4, C22≀C2, C4⋊D4, C22.D4, C22×D4, C4⋊Dic3, D6⋊C4, C3×C22⋊C4, C2×D12, C22×Dic3, C2×C3⋊D4, C2×C3⋊D4, C22×C12, S3×C23, C23×C6, C23⋊3D4, D6⋊D4, C23.21D6, C12⋊7D4, C6×C22⋊C4, C22×C3⋊D4, C23⋊4D12
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C24, D12, C22×S3, C22×D4, 2+ 1+4, C2×D12, S3×C23, C23⋊3D4, C22×D12, D4⋊6D6, C23⋊4D12
(1 43)(2 8)(3 45)(4 10)(5 47)(6 12)(7 37)(9 39)(11 41)(13 19)(14 30)(15 21)(16 32)(17 23)(18 34)(20 36)(22 26)(24 28)(25 31)(27 33)(29 35)(38 44)(40 46)(42 48)
(1 24)(2 13)(3 14)(4 15)(5 16)(6 17)(7 18)(8 19)(9 20)(10 21)(11 22)(12 23)(25 40)(26 41)(27 42)(28 43)(29 44)(30 45)(31 46)(32 47)(33 48)(34 37)(35 38)(36 39)
(1 37)(2 38)(3 39)(4 40)(5 41)(6 42)(7 43)(8 44)(9 45)(10 46)(11 47)(12 48)(13 35)(14 36)(15 25)(16 26)(17 27)(18 28)(19 29)(20 30)(21 31)(22 32)(23 33)(24 34)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 12)(2 11)(3 10)(4 9)(5 8)(6 7)(13 32)(14 31)(15 30)(16 29)(17 28)(18 27)(19 26)(20 25)(21 36)(22 35)(23 34)(24 33)(37 48)(38 47)(39 46)(40 45)(41 44)(42 43)
G:=sub<Sym(48)| (1,43)(2,8)(3,45)(4,10)(5,47)(6,12)(7,37)(9,39)(11,41)(13,19)(14,30)(15,21)(16,32)(17,23)(18,34)(20,36)(22,26)(24,28)(25,31)(27,33)(29,35)(38,44)(40,46)(42,48), (1,24)(2,13)(3,14)(4,15)(5,16)(6,17)(7,18)(8,19)(9,20)(10,21)(11,22)(12,23)(25,40)(26,41)(27,42)(28,43)(29,44)(30,45)(31,46)(32,47)(33,48)(34,37)(35,38)(36,39), (1,37)(2,38)(3,39)(4,40)(5,41)(6,42)(7,43)(8,44)(9,45)(10,46)(11,47)(12,48)(13,35)(14,36)(15,25)(16,26)(17,27)(18,28)(19,29)(20,30)(21,31)(22,32)(23,33)(24,34), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,32)(14,31)(15,30)(16,29)(17,28)(18,27)(19,26)(20,25)(21,36)(22,35)(23,34)(24,33)(37,48)(38,47)(39,46)(40,45)(41,44)(42,43)>;
G:=Group( (1,43)(2,8)(3,45)(4,10)(5,47)(6,12)(7,37)(9,39)(11,41)(13,19)(14,30)(15,21)(16,32)(17,23)(18,34)(20,36)(22,26)(24,28)(25,31)(27,33)(29,35)(38,44)(40,46)(42,48), (1,24)(2,13)(3,14)(4,15)(5,16)(6,17)(7,18)(8,19)(9,20)(10,21)(11,22)(12,23)(25,40)(26,41)(27,42)(28,43)(29,44)(30,45)(31,46)(32,47)(33,48)(34,37)(35,38)(36,39), (1,37)(2,38)(3,39)(4,40)(5,41)(6,42)(7,43)(8,44)(9,45)(10,46)(11,47)(12,48)(13,35)(14,36)(15,25)(16,26)(17,27)(18,28)(19,29)(20,30)(21,31)(22,32)(23,33)(24,34), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,32)(14,31)(15,30)(16,29)(17,28)(18,27)(19,26)(20,25)(21,36)(22,35)(23,34)(24,33)(37,48)(38,47)(39,46)(40,45)(41,44)(42,43) );
G=PermutationGroup([[(1,43),(2,8),(3,45),(4,10),(5,47),(6,12),(7,37),(9,39),(11,41),(13,19),(14,30),(15,21),(16,32),(17,23),(18,34),(20,36),(22,26),(24,28),(25,31),(27,33),(29,35),(38,44),(40,46),(42,48)], [(1,24),(2,13),(3,14),(4,15),(5,16),(6,17),(7,18),(8,19),(9,20),(10,21),(11,22),(12,23),(25,40),(26,41),(27,42),(28,43),(29,44),(30,45),(31,46),(32,47),(33,48),(34,37),(35,38),(36,39)], [(1,37),(2,38),(3,39),(4,40),(5,41),(6,42),(7,43),(8,44),(9,45),(10,46),(11,47),(12,48),(13,35),(14,36),(15,25),(16,26),(17,27),(18,28),(19,29),(20,30),(21,31),(22,32),(23,33),(24,34)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,12),(2,11),(3,10),(4,9),(5,8),(6,7),(13,32),(14,31),(15,30),(16,29),(17,28),(18,27),(19,26),(20,25),(21,36),(22,35),(23,34),(24,33),(37,48),(38,47),(39,46),(40,45),(41,44),(42,43)]])
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 2J | 2K | 2L | 2M | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 6A | ··· | 6G | 6H | 6I | 6J | 6K | 12A | ··· | 12H |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 12 | 12 | 12 | 12 | 2 | 4 | 4 | 4 | 4 | 12 | 12 | 12 | 12 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | S3 | D4 | D6 | D6 | D6 | D12 | 2+ 1+4 | D4⋊6D6 |
kernel | C23⋊4D12 | D6⋊D4 | C23.21D6 | C12⋊7D4 | C6×C22⋊C4 | C22×C3⋊D4 | C2×C22⋊C4 | C22×C6 | C22⋊C4 | C22×C4 | C24 | C23 | C6 | C2 |
# reps | 1 | 4 | 4 | 4 | 1 | 2 | 1 | 4 | 4 | 2 | 1 | 8 | 2 | 4 |
Matrix representation of C23⋊4D12 ►in GL8(𝔽13)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 6 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 6 | 0 | 3 |
0 | 0 | 0 | 0 | 10 | 0 | 7 | 0 |
0 | 0 | 0 | 0 | 0 | 10 | 0 | 7 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 11 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 11 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 11 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 8 | 1 | 2 |
0 | 0 | 0 | 0 | 0 | 9 | 0 | 12 |
G:=sub<GL(8,GF(13))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,6,0,10,0,0,0,0,0,0,6,0,10,0,0,0,0,3,0,7,0,0,0,0,0,0,3,0,7],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12],[0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,11,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,11,1],[0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,12,0,4,0,0,0,0,0,11,1,8,9,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,12] >;
C23⋊4D12 in GAP, Magma, Sage, TeX
C_2^3\rtimes_4D_{12}
% in TeX
G:=Group("C2^3:4D12");
// GroupNames label
G:=SmallGroup(192,1052);
// by ID
G=gap.SmallGroup(192,1052);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,758,675,570,80,6278]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^12=e^2=1,a*b=b*a,d*a*d^-1=e*a*e=a*c=c*a,e*b*e=b*c=c*b,b*d=d*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations